Variation of single cell nanomechanics on micropatterned surfaces
نویسندگان
چکیده
منابع مشابه
Development of micropatterned cell-sensing surfaces.
Microfabricated surfaces have been widely utilized for defining adhesion of single cells or groups of cells of various kinds. Beyond simple control of cell attachment, it is often important to monitor the molecules released by cells. Co-immobilizing miniature sensors alongside cells enables more sensitive detection of secreted factors and may allow for such detection to happen within the contex...
متن کاملCritical areas of cell adhesion on micropatterned surfaces.
The adhesive area is important to modulate cell behaviors on a substrate. This paper aims to semi-quantitatively examine the existence of the characteristic areas of cell adhesion on the level of individual cells. We prepared a series of micropatterned surfaces with adhesive microislands of various sizes on an adhesion-resistant background, and cultured cells of MC3T3-E1 (osteoblast), BMSC (bon...
متن کاملImpact of micropatterned surfaces on neuronal polarity.
Experimental control over cellular polarity in a neuronal network is a promising tool to study synapse formation and network behavior. We aimed to exploit a mechanism described by Stenger et al. [J. Neurosci. Methods 82 (1998) 167] to manipulate the direction of axonal versus dendritic outgrowth on a micropattern. The group had used laser ablation to create patterns of aminated silanes for cell...
متن کاملThermoresponsive Micropatterned Substrates for Single Cell Studies
We describe the design of micropatterned surfaces for single cell studies, based on thermoresponsive polymer brushes. We show that brushes made of poly(N-isopropylacrylamide) grafted at high surface density display excellent protein and cell anti-adhesive properties. Such brushes are readily patterned at the micron scale via deep UV photolithography. A proper choice of the adhesive pattern shap...
متن کاملThe regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces.
Using the material technique recently developed by us, we prepared a micropattern on poly(ethylene glycol) (PEG) hydrogel to keep background resistant to cell adhesion for a long time, which made examination of differentiation of localized stem cells available. Our micropattern designed in this paper prevented or ensured contact between cells adhering in arginine-glycine-aspartic acid (RGD) mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.02802